Network Working Group P. Deutsch

Request for Comments: 1950 Aladdin Enterprises
Category: Informational JL. Gally
Info-ZIP

May 1996

ZL 1B Compressed Data Format Specification version 3.3

Status of ThisMemo

Thismemo providesinformation for the Internet community. This memo does not specify an Internet stan-
dard of any kind. Distribution of thismemo is unlimited.

|ESG Note:

The IESG takes no position on the validity of any Intellectual Property Rights statements contained in this
document.

Notices

Copyright (© 1996 L. Peter Deutsch and Jean-Loup Gailly

Permission is granted to copy and distribute this document for any purpose and without charge, including
tranglationsinto other languages and incorporation into compil ations, provided that the copyright notice and
thisnotice are preserved, and that any substantive changes or deletionsfrom the origina are clearly marked.

A pointer to the latest version of this and related documentation in HTML format can be found at the URL
< ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html >

Abstract

This specification defines alossless compressed data format. The data can be produced or consumed, even
for an arbitrarily long sequentially presented input data stream, using only an a priori bounded amount of in-
termediate storage. Theformat presently usesthe DEFL AT E compression method but can beeasily extended
to use other compression methods. It can be implemented readily in a manner not covered by patents. This
specification also defines the ADLER-32 checksum (an extension and improvement of the Fletcher check-
sum), used for detection of data corruption, and provides an agorithm for computing it.

Deutsch & Gailly Informational [Page 1]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

Contents
1 Introduction 2
11 PUIPOSE . . . o o e 2
12 Intendedaudience 2
13 SCOPE. . . o 2
14 ComplianCe 2
15 Definitionsof te'rmsand conventionsused 3
1.6 Changesfrompreviousversions. i 3
2 Detailed specification 3
21 Ovedlconventions e 3
22 Daaformat e 4
23 ComplianCe 6
3 References 6
4 SOUrCECOdE 6
5 Security CONSIAErations 7
6 Acknowledgements 7
7 Authors Addresses 7
8 Appendix: Rationale. 8
8.1 Presetdictionaries e 8
82 TheAdler-32agorithm 8
9 Appendix: Samplecode 8

1 Introduction

1.1 Purpose

The purpose of this specification isto define alossless compressed data format that:

¢ Isindependent of CPU type, operating system, file system, and character set, and hence can be used
for interchange;

¢ Can be produced or consumed, even for an arbitrarily long sequentially presented input data stream,
using only an a priori bounded amount of intermediate storage, and hence can be used in data com-
munications or similar structures such as Unix filters;

¢ Can use anumber of different compression methods;

¢ Can beimplemented readily in amanner not covered by patents, and hence can be practiced freely.

The dataformat defined by this specification does not attempt to allow random access to compressed data.

Deutsch & Gailly Informational [Page 2]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

1.2 Intended audience

This specification is intended for use by implementors of software to compress datainto zlib format and/or
decompress data from zlib format.

Thetext of the specification assumes a basic background in programming at the level of bitsand other prim-
itive data representations.

1.3 Scope

The specification specifies a compressed data format that can be used for in-memory compression of a se-
guence of arbitrary bytes.

1.4 Compliance
Unlessotherwiseindicated bel ow, acompliant decompressor must be ableto accept and decompress any data

set that conformsto all the specifications presented here; a compliant compressor must produce data setsthat
conform to all the specifications presented here.

15 Définitionsof termsand conventionsused
byte: 8 bitsstored or transmitted as a unit (same as an octet). (For this specification, abyteis exactly 8 bits,

even on machines which storeacharacter on anumber of bitsdifferent from 8.) Seebelow, for thenumbering
of bitswithin abyte.

1.6 Changesfrom previousversions
Version 3.1 was thefirst public release of this specification. In version 3.2, some terminology was changed

and the Adler-32 sample code wasrewritten for clarity. Inversion 3.3, the support for apreset dictionary was
introduced, and the specification was converted to RFC style.

2 Detailed specification

2.1 Overall conventions

In the diagrams below, a box like this:

+-- -+

| | <-- the vertical bars might be mssing
+---+

Deutsch & Gailly Informational [Page 3]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

represents one byte; abox like this:

represents a variable number of bytes.

Bytes stored within a computer do not have a“bit order”, since they are alwaystreated as a unit. However,
abyte considered as an integer between 0 and 255 does have amost- and | east-significant bit, and since we
write numbers with the most-significant digit on the | ft, we al so write byteswith the most-significant bit on
the left. In the diagrams bel ow, we number the bits of a byte so that bit O isthe least-significant bit, i.e., the
bits are numbered:

Within a computer, a number may occupy multiple bytes. All multi-byte numbers in the format described
here are stored withthe MOST-significant bytefirst (at thelower memory address). For example, thedecimal
number 520 is stored as:

+ less significant byte = 8
nore significant byte = 2 x 256

+ ——

2.2 Dataformat

A Zzlib stream has the following structure:

0 1
o - -+

| CVF| FLG (nmore-->)
Fom oo+

(if FLG.FDICT set)

0 1 2 3
e S

| DI CTI D | (rmore-->)
g D

Deutsch & Gailly Informational [Page 4]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

+====—=== B T o
| ...conpressed data...| ADLER32 |
+====—=== B T o

Any data which may appear after ADLER32 are not part of the zlib stream.

CMF (Compression Method and flags)

This byte is divided into a 4-bit compression method and a 4-bit information field depending on the
compression method.

bits 0 to 3 CM Conpr essi on et hod
bits 4 to 7 CINFO Conpression info

CM (Compression method)

This identifies the compression method used in the file. CM = 8 denotes the “deflate” compression
method with a window size up to 32K. Thisis the method used by gzip and PNG (see references [1]
and [2] in Chapter 3, below, for the reference documents). CM = 15 isreserved. It might be used in
afuture version of this specification to indicate the presence of an extrafield before the compressed
data.

CINFO (Compression info)

For CM =8, CINFO isthebase-2 | ogarithm of the L Z77 window size, minuseight (CINFO=7 indicates
a 32K window size). Values of CINFO above 7 are not allowed in this version of the specification.
CINFO is not defined in this specification for CM not equal to 8.

FLG (FLaGs)
Thisflag byteis divided as follows:
bits 0 to 4 FCHECK (check bits for COW and FLG

bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (conpression |evel)

The FCHECK valuemust be such that CMF and FL G, when viewed as a 16-bit unsigned integer stored
in MSB order (CMF*256 + FLG), isamultiple of 31.

FDICT (Preset dictionary)

If FDICT isset, aDICT dictionary identifier is present immediately after the FL G byte. Thedictionary
is a sequence of bytes which are initially fed to the compressor without producing any compressed
output. DICT isthe Adler-32 checksum of this sequence of bytes (see the definition of ADLER32
below). The decompressor can use thisidentifier to determine which dictionary has been used by the
COMpressor.

FLEVEL (Compression level)

These flags are available for use by specific compression methods. The “deflate” method (CM = 8)
setsthese flags as follows:

Deutsch & Gailly Informational [Page 5]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

- conpressor used fastest algorithm

- conpressor used fast algorithm

- conpressor used default algorithm

- conpressor used nmaxi mum conpression, slowest algorithm

[CSIN\ VI ol)

Theinformationin FLEVEL is not needed for decompression; it is thereto indicate if recompression
might be worthwhile.

compressed data

For compression method 8, the compressed data is stored in the deflate compressed data format as
described in the document “DEFLATE Compressed Data Format Specification” by L. Peter Deutsch.
(See reference [3] in Chapter 3, below)

Other compressed data formats are not specified in this version of the zlib specification.

ADLER32 (Adler-32 checksum)

This contains a checksum value of the uncompressed data (excluding any dictionary data) computed
according to Adler-32 algorithm. Thisalgorithmisa32-bit extension and improvement of the Fletcher
algorithm, usedinthel TU-T X.224/1SO 8073 standard. Seereferences[4] and [5] in Chapter 3, below)

Adler-32iscomposed of two sums accumulated per byte: sl isthesum of al bytes, s2 isthe sum of all
sl values. Both sumsare donemodul 0 65521. slisinitializedto 1, s2 to zero. The Adler-32 checksum
isstored as s2* 65536 + s1 in most-significant-bytefirst (network) order.

2.3 Compliance

A compliant compressor must produce streamswith correct CMF, FLG and ADLER32, but need not support
preset dictionaries. When the zlib dataformat is used as part of another standard dataformat, the compressor
may use only preset dictionariesthat are specified by this other dataformat. If thisother format does not use
the preset dictionary feature, the compressor must not set the FDICT flag.

A compliant decompressor must check CMF, FLG, and ADLER32, and provide an error indication if any
of these have incorrect values. A compliant decompressor must give an error indication if CM is not one
of the values defined in this specification (only the value 8 is permitted in this version), since another value
could indicate the presence of new features that would cause subsequent data to be interpreted incorrectly.
A compliant decompressor must give an error indication if FDICT is set and DICTID is not the identifier
of aknown preset dictionary. A decompressor may ignore FLEVEL and still be compliant. When the zlib
dataformat isbeing used as apart of another standard format, acompliant decompressor must support all the
preset dictionaries specified by the other format. When the other format does not use the preset dictionary
feature, a compliant decompressor must reject any stream in which the FDICT flag is set.

Deutsch & Gailly Informational [Page 6]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

3 References

[1] Deutsch, L.P,“ GZIP Compressed Data Format Specification”, availablein ftp://ftp.uu.net/pub/archiving/
zip/doc/

[2] ThomasBoutell, “PNG (Portable Network Graphics) specification”, availablein ftp://ftp.uu.net/graphics/
png/documents/

[3] Deutsch, L.P,"DEFLATE Compressed Data Format Specification”, available in ftp://ftp.uu.net/pub/
archiving/zip/doc/

[4] Fletcher, J. G., “An Arithmetic Checksum for Serial Transmissions,” |EEE Transactions on Communi-
cations, Vol. COM-30, No. 1, January 1982, pp. 247-252.

[5] ITU-T Recommendation X.224, Annex D, “Checksum Algorithms,” November, 1993, pp. 144, 145.
(Available from gopher://info.itu.ch). ITU-T X.244 isaso the same as 1SO 8073.

4 Sourcecode

Source codefor aC languageimplementation of a“zlib” compliant library isavailableat ftp://ftp.uu.net/pub/
archiving/zip/zlibl.

5 Security Considerations

A decoder that fails to check the ADLER32 checksum value may be subject to undetected data corruption.

6 Acknowledgements

Trademarks cited in this document are the property of their respective owners.

Jean-Loup Gailly and Mark Adler designed the zlib format and wrote the related software described in this
specification. Glenn Randers-Pehrson converted this document to RFC and HTML format.

7 Authors Addresses

L. Peter Deutsch

Deutsch & Gailly Informational [Page 7]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

Al addi n Enterprises
203 Santa Margarita Ave.
Menl o Park, CA 94025

Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMai | : <ghost @l addi n. con®

Jean-Loup Gailly
EMai | : <gzi p@rep.ai.nmt.edu>
Questions about the technical content of this specification can be sent by email to

Jean-Loup Gailly <gzip@rep.ai.mt.edu> and
Mar k Adl er <nmmadl er @l ummi . cal t ech. edu>

Editoria comments on this specification can be sent by email to

L. Peter Deutsch <ghost @l addi n. conm> and
d enn Rander s- Pehr son <randeg@l umi . r pi . edu>

8 Appendix: Rationale

8.1 Preset dictionaries

A preset dictionary isspecially useful to compress short input sequences. The compressor can take advantage
of the dictionary context to encode theinput in amore compact manner. The decompressor can beinitialized
with the appropriate context by virtually decompressing a compressed version of the dictionary without pro-
ducing any output. However for certain compression algorithms such as the deflate algorithm this operation
can be achieved without actually performing any decompression.

The compressor and the decompressor must use exactly the same dictionary. The dictionary may be fixed
or may be chosen among a certain number of predefined dictionaries, according to the kind of input data.
The decompressor can determine which dictionary has been chosen by the compressor by checking thedic-
tionary identifier. This document does not specify the contents of predefined dictionaries, since the optimal
dictionaries are application specific. Standard data formats using this feature of the zlib specification must
precisely define the allowed dictionaries.

8.2 TheAdler-32algorithm

The Adler-32 algorithm is much faster than the CRC32 algorithm yet still provides an extremely low prob-
ability of undetected errors.

Deutsch & Gailly Informational [Page §]

RFC 1950 ZLIB Compressed Data Format Specification May 1996

The modulo on unsigned long accumul ators can be delayed for 5552 bytes, so the modulo operationtimeis
negligible. If the bytesare a b, ¢, the second sumis3a+ 2b + ¢ + 3, and so is position and order sensitive,
unlikethefirst sum, whichisjust achecksum. That 65521 isprimeisimportant to avoid apossiblelarge class
of two-byte errorsthat leave the check unchanged. (The Fletcher checksum uses 255, whichisnot primeand
which also makes the Fletcher check insensitiveto single byte changes 0 <-> 255.)

Thesum slisinitialized to 1 instead of zero to make the length of the sequence part of s2, so that the length
does not have to be checked separately. (Any sequence of zeroes has a Fletcher checksum of zero.)

9 Appendix: Sample code

Thefollowing C code computesthe Adler-32 checksum of adatabuffer. Itiswrittenfor clarity, not for speed.
The samplecodeisinthe ANSI C programming language. Non C users may find it easier to read with these
hints:

& Bi twi se AND oper at or.

>> Bitwi se right shift operator. \Wen applied to an
unsi gned quantity, as here, right shift inserts zero bit(s)
at the left.

<< Bitwise left shift operator. Left shift inserts zero
bit(s) at the right.

++ "n++" increnents the variable n

% nodul o operator: a %b is the remainder of a divided by b

#def i ne BASE 65521 /* |argest prinme snaller than 65536 */

/*
Update a running Adler-32 checksumwi th the bytes buf[O0..|en-1]
and return the updated checksum The Adl er-32 checksum shoul d be
initialized to 1

Usage exanpl e:
unsi gned long adler = 1L

whil e (read_buffer(buffer, length) = EOF) {
adl er = update_adl er32(adl er, buffer, |ength);

}
if (adler !'= original _adler) error();

*/

unsi gned | ong updat e_adl er 32(unsi gned | ong adl er
unsi gned char *buf, int |en)

{

adl er & Oxffff;
(adler >> 16) & Oxffff;

unsi gned | ong s1
unsi gned | ong s2
int n;

Deutsch & Gailly Informational [Page 9]

RFC 1950

for (n
sl =
s2 =

}

return

1

ZL1B Compressed Data Format Specification

=0; n<len; n+t+) {
(s1 + buf[n]) % BASE;
(s2 + s1) % BASE;

(s2 << 16) + s1;

/* Return the adler32 of the bytes buf[O0..len-1] */

unsi gned

{

l ong adl er32(unsi gned char *buf, int |en)

return update_adl er32(1L, buf, len);

1

Deutsch & Gailly

Informational

May 1996

[Page 10]

